Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1276148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235198

RESUMO

A major difficulty to reach commercial- scale production for plant-made antibodies is the complexity and cost of their purification from plant extracts. Here, using Protein A magnetic beads, two monoclonal antibodies are purified in a one-step procedure directly from non-clarified crude plant extracts. This technique provides significant savings in terms of resources, operation time, and equipment.

3.
Plant Biotechnol J ; 15(3): 285-296, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27483398

RESUMO

Influenza virus-like particles (VLPs) have been shown to induce a safe and potent immune response through both humoral and cellular responses. They represent promising novel influenza vaccines. Plant-based biotechnology allows for the large-scale production of VLPs of biopharmaceutical interest using different model organisms, including Nicotiana benthamiana plants. Through this platform, influenza VLPs bud from the plasma membrane and accumulate between the membrane and the plant cell wall. To design and optimize efficient production processes, a better understanding of the plant cell wall composition of infiltrated tobacco leaves is a major interest for the plant biotechnology industry. In this study, we have investigated the alteration of the biochemical composition of the cell walls of N. benthamiana leaves subjected to abiotic and biotic stresses induced by the Agrobacterium-mediated transient transformation and the resulting high expression levels of influenza VLPs. Results show that abiotic stress due to vacuum infiltration without Agrobacterium did not induce any detectable modification of the leaf cell wall when compared to non infiltrated leaves. In contrast, various chemical changes of the leaf cell wall were observed post-Agrobacterium infiltration. Indeed, Agrobacterium infection induced deposition of callose and lignin, modified the pectin methylesterification and increased both arabinosylation of RG-I side chains and the expression of arabinogalactan proteins. Moreover, these modifications were slightly greater in plants expressing haemagglutinin-based VLP than in plants infiltrated with the Agrobacterium strain containing only the p19 suppressor of silencing.


Assuntos
Agrobacterium/metabolismo , Biotecnologia/métodos , Parede Celular/metabolismo , Hemaglutininas/metabolismo , Nicotiana/metabolismo , Agrobacterium/genética , Hemaglutininas/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética
4.
FASEB J ; 29(9): 3817-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26038124

RESUMO

Medicago, Inc. has developed an efficient virus-like particle (VLP) vaccine production platform using the Nicotiana benthamiana expression system, and currently has influenza-based products targeting seasonal/pandemic hemagglutinin (HA) proteins in advanced clinical trials. We wished to generate a trackable HA-based VLP that would allow us to study both particle assembly in plants and VLP interactions within the mammalian immune system. To this end, a fusion protein was designed, composed of H5 (from influenza A/Indonesia/05/2005 [H5N1]) with enhanced green fluorescent protein (eGFP). Expression of H5-eGFP in N. benthamiana produced brightly fluorescent ∼160 nm particles resembling H5-VLPs. H5-eGFP-VLPs elicited anti-H5 serologic responses in mice comparable to those elicited by H5-VLPs in almost all assays tested (hemagglutination inhibition/IgG(total)/IgG1/IgG2b/IgG2a:IgG1 ratio), as well as a superior anti-GFP IgG response (mean optical density = 2.52 ± 0.16 sem) to that elicited by soluble GFP (mean optical density = 0.12 ± 0.06 sem). Confocal imaging of N. benthamiana cells expressing H5-eGFP displayed large fluorescent accumulations at the cell periphery, and draining lymph nodes from mice given H5-eGFP-VLPs via footpad injection demonstrated bright fluorescence shortly after administration (10 min), providing proof of concept that the H5-eGFP-protein/VLPs could be used to monitor both VLP assembly and immune trafficking. Given these findings, this novel fluorescent reagent will be a powerful tool to gain further fundamental insight into the biology of influenza VLP vaccines.


Assuntos
Anticorpos Antivirais/imunologia , Proteínas de Fluorescência Verde , Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Nicotiana , Plantas Geneticamente Modificadas , Animais , Feminino , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Proteínas de Fluorescência Verde/farmacologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/biossíntese , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
5.
Biotechnol J ; 10(9): 1478-86, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25914077

RESUMO

Eukaryotic expression systems are used for the production of complex secreted proteins. However, recombinant proteins face considerable biochemical challenges along the secretory pathway, including proteolysis and pH variation between organelles. As the use of synthetic biology matures into solutions for protein production, various host-cell engineering approaches are being developed to ameliorate host-cell factors that can limit recombinant protein quality and yield. We report the potential of the influenza M2 ion channel as a novel tool to neutralize the pH in acidic subcellular compartments. Using transient expression in the plant host, Nicotiana benthamiana, we show that ion channel expression can significantly raise pH in the Golgi apparatus and that this can have a strong stabilizing effect on a fusion protein separated by an acid-susceptible linker peptide. We exemplify the utility of this effect in recombinant protein production using influenza hemagglutinin subtypes differentially stable at low pH; the expression of hemagglutinins prone to conformational change in mildly acidic conditions is considerably enhanced by M2 co-expression. The co-expression of a heterologous ion channel to stabilize acid-labile proteins and peptides represents a novel approach to increasing the yield and quality of secreted recombinant proteins in plants and, possibly, in other eukaryotic expression hosts.


Assuntos
Canais Iônicos/metabolismo , Proteínas Recombinantes/metabolismo , Biotecnologia , Concentração de Íons de Hidrogênio , Canais Iônicos/genética , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Nicotiana/genética , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
6.
Plant Biotechnol J ; 13(5): 717-25, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25523794

RESUMO

Influenza virus-like particles (VLPs) are noninfectious particles resembling the influenza virus representing a promising vaccine alternative to inactivated influenza virions as antigens. Medicago inc. has developed a plant-based VLP manufacturing platform allowing the large-scale production of GMP-grade influenza VLPs. In this article, we report on the biochemical compositions of these plant-based influenza candidate vaccines, more particularly the characterization of the N-glycan profiles of the viral haemagglutinins H1 and H5 proteins as well as the tobacco-derived lipid content and residual impurities. Mass spectrometry analyses showed that all N-glycosylation sites of the extracellular domain of the recombinant haemagglutinins carry plant-specific complex-type N-glycans having core α(1,3)-fucose, core ß(1,2)-xylose epitopes and Lewis(a) extensions. Previous phases I and II clinical studies have demonstrated that no hypersensibility nor induction of IgG or IgE directed against these glycans was observed. In addition, this article showed that the plant-made influenza vaccines are highly pure VLPs preparations while detecting no protein contaminants coming either from Agrobacterium or from the enzymes used for the enzyme-assisted extraction process. In contrast, VLPs contain few host cell proteins and glucosylceramides associated with plant lipid rafts. Identification of such raft markers, together with the type of host cell impurity identified, confirmed that the mechanism of VLP formation in planta is similar to the natural process of influenza virus assembly in mammals.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Nicotiana/metabolismo , Sequência de Aminoácidos , Epitopos/química , Epitopos/imunologia , Expressão Gênica , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Microdomínios da Membrana , Dados de Sequência Molecular , Fosfolipídeos/química , Plantas Geneticamente Modificadas , Polissacarídeos/química , Proteínas Recombinantes , Esfingolipídeos/química , Nicotiana/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia
7.
Can J Infect Dis Med Microbiol ; 24(4): 202-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24489562

RESUMO

HIV-1 tropism assays play a crucial role in determining the response to CCR5 receptor antagonists. Initially, phenotypic tests were used, but limited access to these tests prompted the development of alternative strategies. Recently, genotyping tropism has been validated using a Canadian technology in clinical trials investigating the use of maraviroc in both experienced and treatment-naive patients. The present guidelines review the evidence supporting the use of genotypic assays and provide recommendations regarding tropism testing in daily clinical management.


Les tests de détermination du tropisme du VIH-1 jouent un rôle capital dans la détermination de la réponse aux antagonistes des récepteurs du CCR5. Au début, on utilisait des tests phénotypiques, mais leur accès limité a suscité l'élaboration d'autres stratégies. Récemment, le génotypage du tropisme a été validé à l'aide d'une technologie canadienne, dans le cadre d'essais cliniques faisant appel au maraviroc tant chez des patients déjà en traitement que chez des patients naïfs au traitement. Les présentes lignes directrices passent en revue les données probantes en appui à l'utilisation de tests génotypiques et contiennent des recommandations au sujet des tests de détermination du tropisme dans la prise en charge clinique quotidienne.

8.
Anal Biochem ; 379(1): 66-72, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18482571

RESUMO

Development of convenient strategies for identification of plant N-glycan profiles has been driven by the emergence of plants as an expression system for therapeutic proteins. In this article, we reinvestigated qualitative and quantitative aspects of plant N-glycan profiling. The extraction of plant proteins through a phenol/ammonium acetate procedure followed by deglycosylation with peptide N-glycosidase A (PNGase A) and coupling to 2-aminobenzamide provides an oligosaccharide preparation containing reduced amounts of contaminants from plant cell wall polysaccharides. Such a preparation was also suitable for accurate qualitative and quantitative evaluation of the N-glycan content by mass spectrometry. Combining these approaches allows the profiling to be carried out from as low as 500 mg of fresh leaf material. We also demonstrated that collision-induced dissociation (CID) mass spectrometry in negative mode of N-glycans harboring alpha(1,3)- or alpha(1,6)-fucose residue on the proximal GlcNAc leads to specific fragmentation patterns, thereby allowing the discrimination of plant N-glycans from those arising from mammalian contamination.


Assuntos
Plantas/química , Polissacarídeos/análise , Polissacarídeos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Medicago sativa/química , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Folhas de Planta/química , Polissacarídeos/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Nicotiana/química , ortoaminobenzoatos/química
9.
Plant Biotechnol J ; 6(1): 82-92, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17986176

RESUMO

The use of multiple copies of vectors based on either full-length or deleted versions of cowpea mosaic virus RNA-2 for the production of heteromeric proteins in plants was investigated. Co-infiltration of two full-length RNA-2 constructs containing different marker genes into Nicotiana benthamiana in the presence of RNA-1 showed that the two foreign proteins were efficiently expressed within the same cell in inoculated tissue. Furthermore, the proteins were co-localized to the same subcellular compartments, an essential prerequisite for heteromer formation. However, segregation of two separate RNA-2 molecules, and therefore expression of the two proteins, was observed on systemic spread of the recombinant viruses. Thus, efficient assembly of heteromeric proteins is likely to occur only in inoculated tissue. To determine the optimum approach for expression in inoculated tissue, the heavy and light chains of the blood group-typing immunoglobulin G (IgG) C5-1 were inserted into full-length and deleted versions of RNA-2, and the constructs were agroinfiltrated in the presence of RNA-1. The results obtained showed that full-size IgG molecules accumulated using both approaches, but that the levels were significantly higher when deleted RNA-2 vectors were used. The levels were also greatly enhanced by the inclusion of an endoplasmic reticulum retention signal at the C-terminus of the heavy chain. As the potential benefit of using full-length RNA-2 constructs, the ability to spread systemically, appears to be irrelevant to the production of heteromeric proteins, the use of deleted versions of RNA-2 is clearly advantageous, particularly as they offer the benefit of biocontainment.


Assuntos
Comovirus/genética , Vetores Genéticos , Subunidades de Imunoglobulinas/metabolismo , Nicotiana/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Expressão Gênica , Imunoglobulina G/metabolismo , Camundongos , RNA Mensageiro/metabolismo , Nicotiana/genética
10.
Plant Biotechnol J ; 4(3): 359-68, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-17147641

RESUMO

Proteolytic degradation represents a significant barrier to the efficient production of several recombinant proteins in plants, both in vivo during their expression and in vitro during their recovery from source tissues. Here, we describe a strategy to protect recombinant proteins during the recovery process, based on the coexpression of a heterologous proteinase inhibitor acting as a 'mouse trap' against the host proteases during extraction. After confirming the importance of trypsin- and chymotrypsin-like activities in crude protein extracts of potato (Solanum tuberosum L.) leaves, transgenic lines of potato expressing either tomato cathepsin D inhibitor (CDI) or bovine aprotinin, both active against trypsin and chymotrypsin, were generated by Agrobacterium tumefaciens-mediated genetic transformation. Leaf crude protein extracts from CDI-expressing lines, showing decreased levels of cathepsin D-like and ribulose 1,5-bisphosphate carboxylase/oxygenase hydrolysing activities in vitro, conducted decreased turnover rates of the selection marker protein neomycin phosphotransferase II (NPTII) relative to the turnover rates measured for transgenic lines expressing only the marker protein. A similar stabilizing effect on NPTII was observed in leaf protein extracts from plant lines coexpressing bovine aprotinin, confirming the ability of ectopically expressed broad-spectrum serine proteinase inhibitors to reproduce the protein-stabilizing effect of low-molecular-weight proteinase inhibitors generally added to protein extraction media.


Assuntos
Plantas Geneticamente Modificadas/metabolismo , Inibidores de Proteases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Solanum tuberosum/genética , Agrobacterium tumefaciens/genética , Animais , Aprotinina/genética , Aprotinina/metabolismo , Aprotinina/fisiologia , Bovinos , Solanum lycopersicum/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/enzimologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Solanum tuberosum/enzimologia , Solanum tuberosum/metabolismo , Transformação Genética
11.
FEMS Microbiol Lett ; 233(2): 325-31, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15063503

RESUMO

Hydrolysis of cellulose requires two different types of cellulases: exo- and endocellulase. Here, we investigated for the hydrolysis of cellulose by two types of cellulases, an endoglucanase (Cel5) from Ruminococcus albus fused with the xylanase A cellulose binding domain II (CBM6) of Clostridium stercorarium and Thermobifidus fusca E3, an exoglucanase (Cel6B). Cel5-CBM6 or Cel6B showed a linear relationship between the production of soluble sugars and the incubation time when native alfalfa cellulose was used as a substrate. Cel5-CBM6 produces more soluble sugars than Cel6B and the hydrolysis of cellulose by a mixture of the two enzymes produces substantially more (22%) soluble sugars than the total amount produced by these enzymes individually. Although Cel5-CBM6 solubilized high quantities of sugars from alfalfa cellulose, it did not significantly decrease its crystallinity, while Cel6B decreased the crystallinity of cellulose by 34%. When the two cellulases were combined, a decrease of more than 50% in the content of crystalline cellulose was observed. The enzyme-gold labeling experiments revealed that both enzymes showed a high affinity for all substrates. Furthermore, simultaneous visualization of the enzyme-binding sites revealed the preferred substrates in native lignocellulosic material. When plant cellulose was pre-incubated with Cel5-CBM6, density of the gold labeling greatly increased suggesting that preliminary exposure of lignocellulosic material to Cel5-CBM6 may have enhanced the accessibility of the substrate to Cel5-CBM6 and Cel6B. This result provides a plausible explanation for the observed endo/exo cellulase synergism during hydrolysis.


Assuntos
Celulase/metabolismo , Celulose/metabolismo , Medicago sativa/microbiologia , Ruminococcus/enzimologia , Sítios de Ligação , Celulase/química , Coloide de Ouro , Hidrólise , Medicago sativa/ultraestrutura , Microscopia Eletrônica , Solubilidade , Especificidade por Substrato
12.
FEMS Microbiol Lett ; 227(2): 175-81, 2003 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-14592706

RESUMO

The recombinant endoglucanase IV (Cel5; encoded by egIV) of Ruminococcus albus was compared with protein Cel5-CBM6 comprised of Cel5 fused at the C-terminus with the single-cellulose binding domain II (CBM6) of Clostridium stercorarium xylanase A, in order to improve its binding ability. Previous analyses using ball-milled cellulose had suggested that a cellulose binding domain of xylanase A could enhance cellulase activity, especially with insoluble substrates. Comparison of the catalytic activities of Cel5 and Cel5-CBM6 were determined using carboxymethylcellulose, Avicel, and filter paper as substrates. This study confirmed previous findings, and provided further evidence suggesting that Cel5-CBM6 exhibits enhanced activity with insoluble cellulose compared to native Cel5. However, its hydrolytic activity with soluble substrates such as carboxymethylcellulose was comparable to Cel5. For both cellulases, central linkages of cellulooligosaccharides (up to six glucose residues) were found to be the preferred points of cleavage. The rates of hydrolysis with both cellulases increased with cellulooligosaccharide chain length, and at least three consecutive glycosyl residues seemed to be necessary for hydrolysis to occur. Cel5-CBM6 showed a higher affinity for cellulose substrates than did Cel5, as demonstrated by transmission electron microscopy. Taken together, these results suggest that CBM6 increases the affinity of Cel5 for insoluble substrates, and this increased binding capacity seems to result in increased catalytic activity.


Assuntos
Celulase/metabolismo , Celulose/metabolismo , Clostridium/enzimologia , Ouro/química , Ruminococcus/enzimologia , Sítios de Ligação , Catálise , Celulase/genética , Celulose/química , Celulose/genética , Clostridium/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ruminococcus/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...